نظریه اعداد

نظریه اعداد (در گذشته به آن حساب یا حساب پیشرفته می‌گفتند) شاخه ای از ریاضیات محض است که خود را عمدتاً وقف مطالعه اعداد صحیح نموده‌است. ریاضیدان آلمانی، کارل فردریش گاوس (۱۷۷۷–۱۸۵۵) گفت: «ریاضیات ملکه علوم است، و نظریه اعداد ملکه ریاضیات.»[1] نظریه اعداد دانان به مطالعه اعداد اول و همچنین خواص اشیائی که از اعداد ساخته می‌شوند می پردازند (به عنوان مثال اعداد گویا) یا تعمیم‌هایی از اعداد تعریف می‌کنند (مثل اعداد صحیح جبری).

تجزیه اعداد صحیح به عوامل اولشان، نقطه مرکزی مطالعات در نظریه اعداد است که می‌توان آن را به کمک این نوع از مارپیچ اولمان (مارپیچ اعداد اول) به تصویر کشید. نظریه اعداد به دنبال فهم خصوصیات دستگاه اعداد صحیح، با وجود پیچیدگی‌های آشکارش است.

اعداد صحیح را می‌توان به خودی یا به عنوان جواب معادلات (در هندسه سیاله ای) در نظر گرفت. سوالات حوزهٔ نظریه اعداد اغلب از طریق مطالعه بر روی اشیاء تحلیلی (به عنوان مثال تابع زتای ریمان) بهتر فهمیده می‌شوند. می‌توان اعداد حقیقی را با کمک اعداد گویا مطالعه کرد، به عنوان مثال با تقریب زدن به کمک اعداد گویا (تقریب سیاله ای).

اصطلاح قدیمی برای نظریه اعداد حساب بود. اوایل قرن بیستم، عبارت «نظریه اعداد» جایگزین آن شد.[note 1] (کلمهٔ «حساب» نزد عوام به عنوان «محاسبات مقدماتی» پنداشته می‌شود. همچنین این اصطلاح در منطق ریاضیات به معنای حساب پئانو و در علوم رایانه به معنای حساب ممیز شناور می‌باشد) استفاده از اصطلاح حساب برای نظریه اعداد در نیمه دوم قرن بیستم رواج پیدا کرد، ادعا می‌شود که ترویج آن تحت تأثیر فرانسوی‌ها بوده‌است.[note 2] به‌خصوص، اصطلاح حسابی به عنوان یک صفت نسبت به نظریه اعدادی ترجیح داده می‌شود.

تاریخچه

طلوع حساب

لوح پلیمپتون ۳۲۲

قدیمی ترین یافته‌هایی که ماهیت حساب دارند، تکه‌ای از لوح پلیمپتون ۳۲۲ است (لارسا، مزوپتامیا، حدود ۱۸۰۰ پیش از میلاد)، که شامل فهرستی از "سه‌تایی‌های فیثاغورثی" می باشد، یعنی اعداد صحیح ، چنان که . این سه‌تایی‌ها، بسیار زیاد و بزرگ اند، به گونه ای که تصور یافته شدنشان به روش بروت فورس (یا اثبات با افنا، با روش افنا اشتباه نشود) برای آن دوره سخت است. این لوح چنین عنوانی دارد: "تاکیلتوم قطری، که از عرض کم شده ..."[2]

طرح لوح نشان می دهد[3] که به این لوح به زبان مدرن به این فرمول اشاره کرده:

که به طور ضمنی در تمارین بابلیان باستان آورده شده.[4] اگر از روش دیگری استفاده می شد،[5] سه تایی‌ها ابتدا ساخته شده و سپس برحسب مرتب می شدند، تا احتمالاً در کاربردهای عملی به عنوان "جدول" مورد استفاده قرار گیرند.

نظریه مقدماتی اعداد

در نظریه مقدماتی اعداد، اعداد صحیح را بی استفاده از روش‌های به‌کار رفته در سایر شاخه‌های ریاضی بررسی می‌کنند. مسائل بخش پذیری، الگوریتم اقلیدس برای محاسبه بزرگ‌ترین مقسوم‌علیه مشترک (ب.م. م)، تجزیه اعداد به اعداد اول، جستجوی عدد کامل perfect number و همنهشتی‌ها در این رده هستند. برخی از یافته‌های مهم این رشته قضیه کوچک فرما، قضیه اعداد اول و قضیه اویلر، قضیه باقیمانده چینی و قانون تقابل درجه دوم هستند. خواص توابع ضربی مانند تابع موبیوس و تابع φ اویلر و دنباله اعداد صحیح و فاکتوریل‌ها و اعداد فیبوناچی در همین حوزه قرار دارند.

حل بسیاری از مسائل در نظریه مقدماتی اعداد بر خلاف ظاهر ساده آن‌ها نیازمند کوشش بسیار و به‌کار گرفتن روش‌های نوین است. چند نمونه:

  • حدس گلدباخ در مورد نمایش اعداد زوج به صورت جمع دو عدد اول،
  • حدس کاتالان در مورد توانهای متوالی از اعداد صحیح،
  • حدس اعداد اول تؤامان در مورد بینهایت بودن زوج‌های اعداد اول،
  • حدس کولاتز در مورد تکرار ساده،
  • حدس اعداد اول مرسن در مورد بینهایت بودن اعداد اول مرسن و …

همچنین ثابت شده که نظریه معادلات دیوفانتی تعمیم‌ناپذیر است (به مسئله دهم هیلبرت مراجعه کنید).

نظریه تحلیلی اعداد

در نظریه تحلیلی اعداد از حسابان و آنالیز مختلط برای بررسی سؤالاتی در مورد اعداد صحیح استفاه می‌شود. مثال‌هایی در این مورد قضیه اعداد اول و حدس ریمان هستند. مسئله وارینگ (یعنی نمایش هر عدد صحیح به صورت جمع چند مربع یا مکعب)، حدس اعداد اول تؤامان (یافتن بینهایت عدد اول با اختلاف ۲)، و حدس گلدباخ (نمایش هر عدد زوج به‌صورت مجموع دو عدد اول) نیز با روشهای تحلیلی مورد حمله قرار گرفته‌اند. اثبات متعالی (ترافرازنده) بودن ثابت‌های ریاضی مانند π و e نیز در بخش نظریه تحلیلی اعداد قرار دارند. اگرچه حکم‌هایی در مورد اعداد ترافرازنده خارج از محدوده مطالعات اعداد صحیح به نظر می‌آید، در واقع مقادیر ممکن برای چندجمله‌ای‌ها با ضریب‌های صحیح مانند e را بررسی می‌کنند. همچنین این‌گونه مسائل با مبحث تقریب دیوفانتین نیز ارتباط نزدیک دارند که موضوع آن این است که چگونه می‌توان یک عدد حقیقی داده شده را با یک عدد گویا تقریب زد؟

نظریه جبری اعداد

در نظریه جبری اعداد، مفهوم عدد به اعداد جبری، که همان ریشه‌های چندجمله‌ای‌هائی با ضریب گویا هستند، گسترش می‌یابد. در این حوزه اعدادی مشابه اعداد صحیح با نام اعداد صحیح جبری وجود دارد. در این عرصه لازم نیست ویژگی‌های آشنای اعداد صحیح (مانند تجزیه یگانه) برقرار باشد. مزیت روش‌های استفاده شده در این رشته (مثل نظریه گالوا، میدان همانستگی field cohomology، نظریه رده میدان class field theory، نمایش‌های گروه‌ها و توابع-L) این است که برای این رده از اعداد، نظم را تا حدودی تأمین می‌کند.

نظریه هندسی اعداد

نظریه هندسی اعداد (که قبلاً به آن هندسه اعداد می‌گفتند) جنبه‌هایی از هندسه را به نظریه اعداد پیوند می‌دهد؛ و از قضیه مینکوفسکی در ارتباط با نقاط توری در مجموعه‌های محدب و تحقیق در مورد چپاندن کره‌ها (sphere packings) در فضای Rn شروع می‌شود.

نظریه ترکیبیاتی اعداد

نظریه ترکیبیاتی اعداد به مسائلی در نظریه اعداد می‌پردازد که با روش‌های ترکیبیاتی بررسی می‌شوند. پل اردوش بنیان‌گذار اصلی این شاخه از نظریه اعداد بود. الگوریتم‌های سریع برای امتحان اعداد اول و تجزیه اعداد صحیح در رمزنگاری کاربردهای مهمی دارند.

یادداشت‌ها

  1. Already in 1921, T. L. Heath had to explain: "By arithmetic, Plato meant, not arithmetic in our sense, but the science which considers numbers in themselves, in other words, what we mean by the Theory of Numbers." (Heath 1921, p. 13)
  2. Take, for example, Serre 1973. In 1952, Davenport still had to specify that he meant The Higher Arithmetic. Hardy and Wright wrote in the introduction to An Introduction to the Theory of Numbers (1938): "We proposed at one time to change [the title] to An introduction to arithmetic, a more novel and in some ways a more appropriate title; but it was pointed out that this might lead to misunderstandings about the content of the book." (Hardy & Wright 2008)

ارجاعات

  1. Long 1972, p. ۱.
  2. Neugebauer & Sachs 1945, p. 40. The term takiltum is problematic. Robson prefers the rendering "The holding-square of the diagonal from which 1 is torn out, so that the short side comes up...".Robson 2001, p. 192
  3. Robson 2001, p. 189. Other sources give the modern formula . Van der Waerden gives both the modern formula and what amounts to the form preferred by Robson.(van der Waerden 1961, p. 79)
  4. van der Waerden 1961, p. 184.
  5. Neugebauer (Neugebauer 1969, pp. 36–40) discusses the table in detail and mentions in passing Euclid's method in modern notation (Neugebauer 1969, p. 39).

منابع

  • Apostol, Tom M. (1976). Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer. ISBN 978-0-387-90163-3. Retrieved 2016-02-28.
  • Apostol, Tom M. (n.d.). "An Introduction to the Theory of Numbers". (Review of Hardy & Wright.) Mathematical Reviews (MathSciNet). American Mathematical Society. MR 0568909. Retrieved 2016-02-28. (Subscription needed)
  • Becker, Oskar (1936). "Die Lehre von Geraden und Ungeraden im neunten Buch der euklidischen Elemente". Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B:Studien (به German). 3: 533–53.
  • Boyer, Carl Benjamin; Merzbach, Uta C. (1991) [1968]. A History of Mathematics (2nd ed.). New York: Wiley. ISBN 978-0-471-54397-8. 1968 edition at archive.org
  • Clark, Walter Eugene (trans.) (1930). The Āryabhaṭīya of Āryabhaṭa: An ancient Indian work on Mathematics and Astronomy. University of Chicago Press. Retrieved 2016-02-28.
  • Colebrooke, Henry Thomas (1817). Algebra, with Arithmetic and Mensuration, from the Sanscrit of Brahmegupta and Bháscara. London: J. Murray. Retrieved 2016-02-28.
  • Davenport, Harold; Montgomery, Hugh L. (2000). Multiplicative Number Theory. Graduate texts in mathematics. 74 (revised 3rd ed.). Springer. ISBN 978-0-387-95097-6.
  • Edwards, Harold M. (November 1983). "Euler and Quadratic Reciprocity". Mathematics Magazine. 56 (5): 285–91. doi:10.2307/2690368. JSTOR 2690368.
  • Edwards, Harold M. (2000) [1977]. Fermat's Last Theorem: a Genetic Introduction to Algebraic Number Theory. Graduate Texts in Mathematics. 50 (reprint of 1977 ed.). Springer Verlag. ISBN 978-0-387-95002-0.
  • Fermat, Pierre de (1679). Varia Opera Mathematica (به French and Latin). Toulouse: Joannis Pech. Retrieved 2016-02-28.
  • Friberg, Jöran (August 1981). "Methods and Traditions of Babylonian Mathematics: Plimpton 322, Pythagorean Triples and the Babylonian Triangle Parameter Equations". Historia Mathematica. 8 (3): 277–318. doi:10.1016/0315-0860(81)90069-0.
  • von Fritz, Kurt (2004). "The Discovery of Incommensurability by Hippasus of Metapontum". In Christianidis, J. Classics in the History of Greek Mathematics. Berlin: Kluwer (Springer). ISBN 978-1-4020-0081-2.
  • Gauss, Carl Friedrich; Waterhouse, William C. (trans.) (1966) [1801]. Disquisitiones Arithmeticae. Springer. ISBN 978-0-387-96254-2.
  • Goldfeld, Dorian M. (2003). "Elementary Proof of the Prime Number Theorem: a Historical Perspective" (PDF). Retrieved 2016-02-28.
  • Goldstein, Catherine; Schappacher, Norbert (2007). "A book in search of a discipline". In Goldstein, C.; Schappacher, N.; Schwermer, Joachim. The Shaping of Arithmetic after C.F. Gauss's "Disquisitiones Arithmeticae". Berlin & Heidelberg: Springer. pp. 3–66. ISBN 978-3-540-20441-1. Retrieved 2016-02-28.
  • Granville, Andrew (2008). "Analytic number theory". In Gowers, Timothy; Barrow-Green, June; Leader, Imre. The Princeton Companion to Mathematics. Princeton University Press. ISBN 978-0-691-11880-2. Retrieved 2016-02-28.
  • Porphyry; Guthrie, K.S. (trans.) (1920). Life of Pythagoras. Alpine, New Jersey: Platonist Press.
  • Guthrie, Kenneth Sylvan (1987). The Pythagorean Sourcebook and Library. Grand Rapids, Michigan: Phanes Press. ISBN 978-0-933999-51-0.
  • Hardy, Godfrey Harold; Wright, E.M. (2008) [1938]. An Introduction to the Theory of Numbers (Sixth ed.). Oxford University Press. ISBN 978-0-19-921986-5. MR 2445243.
  • Heath, Thomas L. (1921). A History of Greek Mathematics, Volume 1: From Thales to Euclid. Oxford: Clarendon Press. Retrieved 2016-02-28.
  • Hopkins, J.F.P. (1990). "Geographical and Navigational Literature". In Young, M.J.L.; Latham, J.D.; Serjeant, R.B. Religion, Learning and Science in the 'Abbasid Period. The Cambridge history of Arabic literature. Cambridge University Press. ISBN 978-0-521-32763-3.
  • Huffman, Carl A. (8 August 2011). Zalta, Edward N., ed. "Pythagoras". Stanford Encyclopaedia of Philosophy (Fall 2011 ed.). Retrieved 7 February 2012.
  • Iwaniec, Henryk; Kowalski, Emmanuel (2004). Analytic Number Theory. American Mathematical Society Colloquium Publications. 53. Providence, RI: American Mathematical Society. ISBN 978-0-8218-3633-0.
  • Plato; Jowett, Benjamin (trans.) (1871). Theaetetus.
  • Lam, Lay Yong; Ang, Tian Se (2004). Fleeting Footsteps: Tracing the Conception of Arithmetic and Algebra in Ancient China (revised ed.). Singapore: World Scientific. ISBN 978-981-238-696-0. Retrieved 2016-02-28.
  • Long, Calvin T. (1972). Elementary Introduction to Number Theory (2nd ed.). Lexington, VA: D.C. Heath and Company. LCCN 77171950.
  • Mahoney, M.S. (1994). The Mathematical Career of Pierre de Fermat, 1601–1665 (Reprint, 2nd ed.). Princeton University Press. ISBN 978-0-691-03666-3. Retrieved 2016-02-28.
  • Milne, J.S. (2014). "Algebraic Number Theory". Available at www.jmilne.org/math. Missing or empty |url= (help)
  • Montgomery, Hugh L.; Vaughan, Robert C. (2007). Multiplicative Number Theory: I, Classical Theory. Cambridge University Press. ISBN 978-0-521-84903-6. Retrieved 2016-02-28.
  • Morrow, Glenn Raymond (trans. , ed.); Proclus (1992). A Commentary on Book 1 of Euclid's Elements. Princeton University Press. ISBN 978-0-691-02090-7.
  • Mumford, David (March 2010). "Mathematics in India: reviewed by David Mumford" (PDF). Notices of the American Mathematical Society. 57 (3): 387. ISSN 1088-9477.
  • Neugebauer, Otto E. (1969). The Exact Sciences in Antiquity (corrected reprint of the 1957 ed.). New York: Dover Publications. ISBN 978-0-486-22332-2. Retrieved 2016-03-02.
  • Neugebauer, Otto E.; Sachs, Abraham Joseph; Götze, Albrecht (1945). Mathematical Cuneiform Texts. American Oriental Series. 29. American Oriental Society etc.
  • O'Grady, Patricia (September 2004). "Thales of Miletus". The Internet Encyclopaedia of Philosophy. Retrieved 7 February 2012.
  • Pingree, David; Ya'qub, ibn Tariq (1968). "The Fragments of the Works of Ya'qub ibn Tariq". Journal of Near Eastern Studies. 26.
  • Pingree, D.; al-Fazari (1970). "The Fragments of the Works of al-Fazari". Journal of Near Eastern Studies. 28.
  • Plofker, Kim (2008). Mathematics in India. Princeton University Press. ISBN 978-0-691-12067-6.
  • Qian, Baocong, ed. (1963). 緝古算經-Qian-Baocong-錢寶琮 Suanjing shi shu (Ten Mathematical Classics) (به Chinese). Beijing: Zhonghua shuju. Retrieved 2016-02-28.
  • Rashed, Roshdi (1980). "Ibn al-Haytham et le théorème de Wilson". Archive for History of Exact Sciences. 22 (4): 305–21. doi:10.1007/BF00717654.
  • Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a Reassessment of Plimpton 322" (PDF). Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Archived from the original (PDF) on 2014-10-21.
  • Sachau, Eduard; Bīrūni, ̄Muḥammad ibn Aḥmad (1888). Alberuni's India: An Account of the Religion, Philosophy, Literature, Geography, Chronology, Astronomy and Astrology of India, Vol. 1. London: Kegan, Paul, Trench, Trübner & Co. Retrieved 2016-02-28.
  • Serre, Jean-Pierre (1996) [1973]. A Course in Arithmetic. Graduate texts in mathematics. 7. Springer. ISBN 978-0-387-90040-7.
  • Smith, D.E. (1958). History of Mathematics, Vol I. New York: Dover Publications.
  • Tannery, Paul; Henry, Charles (eds.); Fermat, Pierre de (1891). Oeuvres de Fermat. (4 Vols.) (به French and Latin). Paris: Imprimerie Gauthier-Villars et Fils. Volume 1 Volume 2 Volume 3 Volume 4 (1912)
  • Iamblichus; Taylor, Thomas (trans.) (1818). Life of Pythagoras or, Pythagoric Life. London: J.M. Watkins. Archived from the original on 2011-07-21. For other editions, see Iamblichus#List of editions and translations
  • Truesdell, C.A. (1984). "Leonard Euler, Supreme Geometer". In Hewlett, John (trans.). Leonard Euler, Elements of Algebra (reprint of 1840 5th ed.). New York: Springer-Verlag. ISBN 978-0-387-96014-2. This Google books preview of Elements of algebra lacks Truesdell's intro, which is reprinted (slightly abridged) in the following book:
  • Truesdell, C.A. (2007). "Leonard Euler, Supreme Geometer". In Dunham, William. The Genius of Euler: reflections on his life and work. Volume 2 of MAA tercentenary Euler celebration. New York: Mathematical Association of America. ISBN 978-0-88385-558-4. Retrieved 2016-02-28.
  • Varadarajan, V.S. (2006). Euler Through Time: A New Look at Old Themes. American Mathematical Society. ISBN 978-0-8218-3580-7. Retrieved 2016-02-28.
  • Vardi, Ilan (April 1998). "Archimedes' Cattle Problem" (PDF). American Mathematical Monthly. 105 (4): 305–19. CiteSeerX 10.1.1.383.545. doi:10.2307/2589706. JSTOR 2589706.
  • van der Waerden, Bartel L.; Dresden, Arnold (trans) (1961). Science Awakening. Vol. 1 or Vol 2. New York: Oxford University Press.
  • Weil, André (1984). Number Theory: an Approach Through History – from Hammurapi to Legendre. Boston: Birkhäuser. ISBN 978-0-8176-3141-3. Retrieved 2016-02-28.
  • This article incorporates material from the Citizendium article "Number theory", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL.
در ویکی‌انبار پرونده‌هایی دربارهٔ نظریه اعداد موجود است.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.